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a b s t r a c t

In this paper, a robust approach using a shape distribution histogram (SDH) feature and modified sparse
representation classification (MSRC) for pedestrian detection in thermal infrared imagery is proposed. In
this framework, the candidate regions that are more likely to contain the pedestrians are first detected
based on the Contour Saliency Map. Then distances between random points on the thinned contour map
of objects in the candidate regions are applied to acquire the SDH feature. SDH is a robust and
discriminative feature which can precisely describe the pedestrian characteristics. Finally, a robust MSRC
classifier which has high accuracy is used to recognize the true pedestrians. Experiments are conducted
over the OSU thermal pedestrian database by comparing with other algorithms. The proposed method
shows an excellent performance in detecting pedestrians.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Pedestrian detection is an essential and significant task in the field
of computer vision. It provides the fundamental information for many
vision-based applications, such as visual surveillance and traffic
monitoring. Recently, pedestrian detection in thermal imagery using
infrared cameras has attractedmore andmore attention, since infrared
images can eliminate the influences of color and illumination varia-
tions compared with visible light images. However, thermal imagery
has its own unique challenges [1]. First, most thermal imageries have
low image qualities due to the low SNR of thermal sensors. They
cannot provide as much information as visible ones can about objects.
Second, non-human objects and backgrounds always produce addi-
tional bright areas which disturbs the detection. Third, the thermal
infrared imagery does not depend on lighting conditions but on
temperature changes. Thus, the human body appears bright on cold
days and turns to dark on hot summer days. This makes standard
background-subtraction and template matching techniques ineffective
to accurately detect pedestrians.

Nowadays, different algorithms have been proposed for pedes-
trian detection in thermal infrared imagery. Nanda et al. used
probabilistic templates to capture the variations in human shape
for pedestrian detection [2]. Xu et al. presented a method for
pedestrian detection and tracking using a single night-vision video

camera installed on the vehicle [3]. The detection phase was
performed by a support vector machine (SVM) with size-nor-
malized pedestrian candidates. In the work of Yasuno et al. [4],
the P-tile method was developed to detect the human head first,
and then the human torso and legs are included by a local search.
Owechko et al. proposed a particle swarm optimization algorithm
for human detection in IR imagery [5]. Davis et al. presented a two-
stage template-based method with an Adaboosted classifier for
pedestrian detection [6]. Dai et al. presented an approach toward
pedestrian detection and tracking from infrared imagery using joint
shape and appearance cues [7]. A shape cue is first used to eliminate
non-pedestrian moving objects and then an appearance cue helps
to locate the exact position of pedestrians. Li et al. presented a
robust pedestrian detection method in thermal infrared images
based on the double-density dual-tree complex wavelet transform
(DD-DT CWT) and wavelet entropy [8]. In the work of Wang et al.
[9], the GMM background model was first deployed to separate the
foreground candidates from the background, then a shape describer
was introduced to construct the feature vector for pedestrian
candidates, and a SVM classifier was trained to detect the pedes-
trian. Ko et al. introduced an efficient human detection method in
thermal images, using a center-symmetric local binary pattern (CS-
LBP) with a luminance saliency map and a random forest (RF)
classifier scheme [10].

Great progress has been made as reported in various literature,
however, practical pedestrian detection still suffers from a lack of
robustness. To address this issue, in this paper, we propose a
robust pedestrian detection method by using the shape
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distribution histogram (SDH) feature with a contour saliency map
and modified sparse representation classification (MSRC) in the
thermal infrared imagery. Since the brightness is unreliable in the
thermal infrared imagery, the proposed method first utilizes the
contour saliency map and a segmentation method to detect
candidate pedestrian regions. Then distances between random
points on the thinned contour map of objects in the candidate
regions are applied to acquire the SDH feature, which can precisely
describe the pedestrian shape. Finally, a robust MSRC classifier
which has high accuracy is used to recognize the true pedestrians
using the SDH feature.

The main contribution of the proposed paper is the robust SDH
feature for infrared pedestrian detection. Nowadays, various features
can be used for representing objects, such as color, texture and shape
[11]. Since the infrared images always have lower spatial resolutions
and cannot provide as much information as visible ones about
objects, shape cues are more reliable and particularly attractive in
an infrared imaging detection system [12–14]. In this study, we
propose a robust and discriminative shape distribution histogram
feature for describing shapes of objects, which was inspired by the
work of Osada et al. [15]. The SDH feature uses random distance
sampling to produce a continuous probability distribution. It can
discriminate different classes of objects correctly despite the object
size and small pose changes. Furthermore, it is simple and fast and
can be used in real-time detection. In addition, we propose a MSRC
classifier which is based on the original SRC classifier [16]. Compared
with the original one, MSRC is more robust in recognizing pedes-
trians and non-pedestrians.

The remainder of the paper is organized as follows. Section 2
presents the candidate regions detection. Section 3 introduces the
SDH feature and the MSRC classifier to recognize pedestrians and
non-pedestrians. Experimental results for infrared pedestrian
detection under various scenarios are shown in Section 4. Finally,
we conclude the paper in Section 5 with a summary.

2. Candidate region detection

We begin the process by detecting the candidate regions in
images that are likely to contain foreground objects. Most of
pedestrian detection methods in thermal infrared images assume

that pedestrians are warmer than the background. These methods
select regions that are hotter than the background using the
threshold [10]. It works in most of the time, especially at night
and during the winter. However, these techniques are unable to
detect pedestrians which are colder than the background, a
situation that can happen in hot summer days. Although using
adaptive thresholds may improve the performance [17], different
from them, we adopt the contour saliency map to detect the
contour boundary of objects, which is unaffected by temperature
differences. This part is introduced in Section 2.1. Furthermore, in
Section 2.2, we introduce a segmentation method based on the
intensity vertical projection to obtain the separate candidate
region of people.

2.1. Contour saliency map

A contour saliency map [18] of a thermal image represents the
probability of each pixel belonging to the contour boundary of
foreground objects. It only shows the gradients in the input image
that are both strong and significantly different from the back-
ground. Thus, false lines around the boundary of foreground
objects can be removed successfully, which is shown in Fig. 1.

The input and background gradient information are combined
to get the contour saliency map of objects. For one input image
Iði; jÞ, its Contour Saliency Map is indicated as

Cði; jÞ ¼min J∇Iði; jÞJ ; J∇ Bði; jÞ� Iði; jÞð ÞJð Þ; ð1Þ
where Bði; jÞ can be obtained as the mean intensity of the training
data. Fig. 1(b) is the Contour Saliency Map of Fig. 1(a). Fig. 1(c) is
the visualization of J∇Iði; jÞJ , and Fig. 1(b) shows that of
J∇ Bði; jÞ� Iði; jÞð ÞJ .

2.2. Pedestrian segmentation

After the contour saliency map has been obtained from the
infrared image, we need to threshold the contour saliency map
into a binary image to select the most salient contours. Then a
mathematical morphology operator is employed to reduce the
noise, and the foreground connected region is extracted and fitted
with a rectangle bounding box. In the case of single pedestrian,
this rectangle bounding box can be defined as the candidate region
of the human body.

Infrared images generally have noise and low brightness pixels.
This may limit the effect of the segmentation of the human. Due to
the pixels on the human body which have low contrast, a single
pedestrian may sometimes be divided by several bounding boxes.

To solve this issue, we first fuse bounding boxes whose weight
center points have a close Euclidean distance. The distance
parameter is related to the size of the pedestrian in the image. It
should be selected appropriately. If the parameter is too small, the
divided people may not be fused to a single one, otherwise, close
people may be fused incorrectly. Since we will use a segmentation
method in the next step, a larger distance parameter would
increase the detection time, but has no obvious influence on the
detection accuracy. According to our experimental experiences, we
suggest the distance parameter is not smaller than the one-third of
the diagonal length in the pedestrian template. In our experi-
ments, we used half of the diagonal length.

The pedestrian template size can be decided based on the priori
knowledge. If pedestrians have very small size differences in the
whole image, a single template can be used. If their sizes are
different due to the linear perspective, we choose different
templates for different regions. Generally, pedestrians close to
the camera are relatively large and at the bottom of the image, and
pedestrians far from the camera are usually small and at the top.
In our experiment, two templates are used for the upper and

Fig. 1. The contour saliency map. (a) The original image, (b) the contour saliency
map, (c) the visualization of J∇Iði; jÞJ , and (d) the visualization of J∇ Bði; jÞ� Iði; jÞð ÞJ .
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bottom half regions of the image. The standard template size in
each region is determined from the manually detected pedestrians
in the training images. 16�30 and 18�36 are used as the
template size in the experiment.

Then a segmentation method is utilized to separate close
people that are fused incorrectly and then we can differentiate
overlapped people. The human head in the infrared image always
has an obvious characteristic. Thus, we can estimate the number of
pedestrians in the bounding box by considering their vertical
projections [9]. Fig. 2 shows that the peak in the vertical projection
curve usually represents the position of the human head. The peak
value can be obtained by comparing each element of projection
data to its neighboring values. If an element is larger than both of
its neighbors, it is chosen as the local peak. In addition, to reduce
the error, minimum peak height is set as a half of the template
height, and the minimum separation between peaks is selected as
a quarter of the template width. When there are multiple local
peaks within a certain distance (the defined minimum separation
between peaks), the highest one is chosen as the final peak.

We mark each peak as the center line of the candidate region.
The transverse distance of the pedestrian is difficult to decide
because of the overlap. So based on the center line, the left and
right borders of the single pedestrian are obtained using a
standard template width for simplicity. In the case that the camera
is not so close to the object, size differences of pedestrians in the
image are small, so that the error caused by the standard template
is also small. Template width in each region can be valid for

pedestrians of different sizes. The longitudinal distance of the
pedestrian can be decided more exactly and reliably. The top and
bottom borders of the single pedestrian are calculated by con-
sidering the intersection of the center line and the human body.

It is obvious that the candidate selection method results in
bounding boxes with different width/height ratios. Since the
shapes and sizes of the real people are not the same, the change-
able width/height ratio is more reasonable and has smaller
influence on detection performance than the fixed width/height
ratios. Some examples of the candidate region segmentation
results are shown in Fig. 3. The yellow rectangles are the original
segmentations. The blue rectangles show the results after fusion,
and the red rectangles are the final results.

3. Pedestrian classification

After candidate regions have been acquired, these regions will
be classified and the real pedestrians will be recognized during
further verification. A discriminative pedestrian feature and an
effective classification technique are needed in this stage. In this
section, we first introduce the SDH feature that describes the
shape of a human body using the shape distance probability
distributions, then a robust MSRC classifier is trained to differ-
entiate pedestrians and non-pedestrians.

3.1. The SDH feature

3.1.1. Description of SDH
The feature extraction is the core part of a pedestrian classifica-

tion. The shape-based feature is more useful for pedestrian detec-
tion in infared images since it usually provides more reliable
information in the general case. In this work, we propose a robust
and efficient shape representation feature motivated by the work of
Osada et al. [15] which shows excellent performance in graphic
matching. The feature is simple and can effectively discriminate
objects with different shapes. In addition, it has several desirable
properties for the applications in this work. First, it yields invariance
under motion and scale by using the distance histogram distribu-
tion. Second, it is robust to noise and blur since random sampling of
it ensures that shape distributions are insensitive to small perturba-
tions. Third, it is fast and efficient which can be used in real-time
detection.

In the framework, the contour saliency map is first thinned to
one-pixel thick contours. The contour saliency map has the
composite characteristic, so that the maximum in it always co-
occurs with the maxima in the input gradients. Therefore, we use
the non-maximum suppression result of the input gradients as the
thinning mask. The thinned contour saliency map is denoted as

Sði; jÞ ¼ Cði; jÞ � f ðJ∇Iði; jÞJ Þ; ð2Þ
in which, f ð�Þ is the non-maximum suppression function.

After thinning, we select the salient contour segments from
Sði; jÞwhich can represent the boundary of the human body well as

Bði; jÞ ¼
1 if Sði; jÞZω;

0 otherwise;

(
ð3Þ

where ω is the threshold that was determined by using the Otsu
method [19]. Fig. 4 shows the process to get the boundary of the
human body. Fig. 4(b) is the contour saliency map of Fig. 4(a).
Fig. 4(c) is the thinned contour saliency map, and Fig. 4(d)
represents the boundary of the human body.

Based on it, a geometric shape function Dk is distributed by
measuring the Euclidean distance between two random points
from the pixels of the candidate regions. Let the kth point pair be
ðik1; jk1Þ and ðik2; jk2Þ, where Bðik1; jk1Þ ¼ Bðik2; jk2Þ ¼ 1. Dk is denoted

Fig. 2. The peak in the vertical projection curve usually represents the position of
the human head.

X. Zhao et al. / Pattern Recognition 48 (2015) 1947–1960 1949



as

Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðik1� ik2Þ2þðjk1� jk2Þ2

q
: ð4Þ

Then, K samples evaluated from the shape distribution Dk and a
histogram is constructed by counting how many samples fall into
each of the m bins. From the histogram, we reconstruct a
piecewise linear function with equally spaced vertices, which
forms the representation for the SDH feature. We compute the
SDH feature for each candidate regions and store it as a sequence
of integers. For the fair comparison, all distance distributions are
normalized to a standard value. Thus, the SDH feature HARm is
indicated as

HðiÞ ¼ 1
K

XK
k ¼ 1

FiðDkÞ; ð5Þ

where

FiðDkÞ ¼
1 if

i�1
m

o Dk

max
j

ðDjÞ
r i

m
;

0 otherwise:

8><
>: ð6Þ

Here, iAf1;…;mg and jAf1;…;Kg.

3.1.2. SDH properties
The SDH is easy to compute and is invariant to scale changes

and small poses. The SDH feature has low computational complex-
ity. The calculation of the SDH feature contains computing
distances of K point pairs and quantizing the K distances to the
bins of the histogram. The distance calculation and the quantiza-
tion require a small quantity of calculation and the complexity of
these items is constant. Thus, the computational complexity of the
SDH feature is O(K).

SDH is insensitive to small pose changes. For the 3D object, the
point pair distance is constant no matter what pose the object has.
The 2D image is the projection of the 3D object from an angle of
view. In other words, the 2D objects with different poses are the
projections of the 3D object in different views. The small changes
of angle of the view cause the small changes of the point pair
distance and thereby changes of the distant histogram are not
obvious. Thus, the SDH feature is resistant to small pose changes.
For example, the distance for a randomly selected point pair ði1; j1Þ
and ði2; j2Þ is indicated as D¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði1� i2Þ2þðj1� j2Þ2

q
in the projected

2D image. Assuming that the rotation angle of the pedestrian in
the x coordinate is α, then the pair distance can be denoted as

Dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði1� i2Þ2 � cos 2αþðj1� j2Þ2

q
. It can be seen that when the α is

small, the change of the distance is small. Similar results can be
obtained for the other two rotation angles.

SDH is also robust to scaling. Given a scaling factor μ, each pair
distance is changed from D to μ � D. Then the threshold
Dk=maxjðDjÞ in Eq. (6) is changed into μ � Dk=maxjðμ � DjÞ ¼
μ � Dk=μ �maxjðDjÞ ¼Dk=maxjðDjÞ, which is the same with that
before scaling. Thus, the distance histogram remains the same.

We test the similarity of the SDH feature for the pedestrian

regions in Fig. 6. Fig. 6(a) shows sample pedestrian regions, in

which pedestrians have different poses and scales, and the

intensities of the pedestrians are obviously different because of

the temperature changes. Fig. 6(c) demonstrates the similarity

among the SDH feature curves for pedestrian regions in Fig. 6(a).

For comparison, we also draw the brightness-histogram-curves of

Fig. 6(a) in Fig. 7, which is introduced in [20]. It is shown that the

Fig. 3. Examples of the candidate region detection results. The yellow rectangle shows the original segmentation. Single pedestrian is possibly divided by several bounding
boxes due to the separation of foreground regions. The blue rectangle shows the results after fusion, and the red rectangle shows the final results. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 4. The process to get the boundary of human body. (a) The test subject; (b) the
contour saliency map; (c) the thinned contour saliency map; and (d) the boundary
of the human body.
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proposed SDH feature is much more robust than the brightness
histogram in representing the similarity of pedestrians.

We also test the classification ability of the SDH feature.
Fig. 6(b) shows some sample images of non-pedestrian regions,
and Fig. 6(d) shows the SDH feature curves in the regions of
Fig. 6(b). The comparison between Fig. 6(c) and (d) reveals that the
SDH feature can differentiate the pedestrians and non-pedestrians
very well.

3.1.3. Parameter discussions
Parameters K and m in the SDH feature are discussed. K is the

number of point pair samples for the shape distribution. The more
the samples are picked, the better the result describes the real
situation. However, large Kwill increase the calculation time. Thus,
the appropriate value of K should be picked to make the balance

between the accuracy and efficiency. K is picked from 50 to 10,000
to test the stability of the SDH feature in Fig. 5(a). It can be seen
that the larger the value of K, the smoother are the feature curves.
On the other hand, when K is set large enough ðKZ1000Þ, the
feature curve can keep a stable shape. In our experiment, K is set
at 1000.

Parameter m describes the number of histogram bins. Theore-
tically, the number of histogram bins indicates the dimension of
the feature vector. The smaller the dimension, the less complicated
are the computer calculations. But at the same time, the discrimi-
nation of the feature may decrease. We use the relative similarity S
to measure the feature discrimination as follows:

S¼ 1
CðC�1Þ

XC
u ¼ 1

XC
v ¼ 1;vau

HT
uHv�

1

C2

XC
u ¼ 1

XC
w ¼ 1

HT
uHw; ð7Þ
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Fig. 6. Properties of the SDH feature. (a) The sample regions of pedestrians, in which pedestrians have different poses and scales, and the intensities of pedestrians are
obvious different because of the temperature changes. (b) The sample regions of non-pedestrian. (c) The similarity of the SDH feature curve in the pedestrian region of (a).
(d) The SDH feature curves in the non-pedestrian region of (b), which represents the classification ability of the SDH feature.
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Fig. 5. Parameter discussion. (a) The parameter K; (b) the parameter m.
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where Hu and Hv indicate the SDH features for people, Hw is for the
non-people, and C is the number of test samples of people (for

simplicity, that of non-people is also C). Thus, 1
CðC�1Þ

PC
u ¼ 1PC

v ¼ 1;vau H
T
uHv shows the average intraclass similarity (similarity

between people), while 1
C2

PC
u ¼ 1

PC
w ¼ 1 H

T
uHw shows the average

interclass similarity (similarity between people and non-people).
From Eq. (7), it can be seen that the larger the relative similarity
becomes, the easier the classifier identifies. It is better to choose a
suitable dimension value to ensure that the relative similarity
decreases notably when reducing the dimension, and no signifi-
cant changes of relative similarity appear when increasing the
dimension. To pick a good m, we select m ¼ 3, 5, 8, 10, 15, 20, 30,
45 and C¼50, and draw the relative similarity curve in Fig. 5(b). It
is shown that when parameter m is smaller than 20, the relative
similarity changes rapidly. However, the relative similarity
remains constant when m is more than 20. Thus, we choose
m¼20 in the experiment.

3.2. MSRC classifier

SRC is a pattern classification method, which implements
sparse representation of data by using the methods for sparse
signal reconstruction in compressed sensing and classifies data in
terms of reconstruction errors [16]. SRC was used for robust face
recognition to cope with noise corruption, occlusion, outlier
detection and etc. It showed excellent classification performance
compared with other classifiers, such as the nearest neighbor (NN)
[21], nearest subspace (NS) [22,23], and linear SVM [24] in the face
databases. However, the original SRC algorithm is not suitable for
the classification problem in this work. Thus, we propose a MSRC
classifier.

Given a training data set aiARm ðiAf1;2;…;ngÞ, where each
sample ai relates a class label li ðliAf1;2;…; cgÞ. Let matrix
A¼ ½a1; a2;…; an�ARm�n. Given an error tolerance ϵ40 and a test
sample yARm, the SRC algorithm can be summarized as below:

(1) Solve the sparse representation problem via ℓ1-norm mini-
mization:

x̂ ¼ arg min
x

‖x‖1; s:t:‖Ax�y‖2rϵ ð8Þ

(2) Compute the residual rjðyÞ ¼ ‖y�Aδjðx̂Þ‖2, for j¼ 1;…; c,
where δj : Rn-Rn is the characteristic function that selects
the coefficients associated with the jth class and sets the
others be 0;

(3) Identify y : IðyÞ ¼ arg miniriðyÞ.

In this work, the classification problem can be viewed as a two-
class classification problem. To use the original SRC algorithm, we
can choose some pedestrian and non-pedestrian samples to
construct the matrix A. Then the following processes are the same
as those in face recognition. However, SRC is not very suitable for
the problem in this work since it is different from the face
recognition problem. In face recognition, the samples can be
viewed as nearly equally distributed points in the face subspace.
The representational abilities of the samples of each subject are
nearly the same. In other words, the samples have nearly no
representational bias. However, in the pedestrian classification,
the representational abilities of the positive and negative samples
are not equal. The positive samples span the subspace of pedes-
trians, while the negative samples span a wider subspace because
of the variety of negative samples. Such unequally distributed
samples have a strong representational bias. Therefore, the
original SRC algorithm is a bias to classify the test pattern into

non-pedestrian. It needs to be modified to fit the target pedestrian
recognition problem.

The base of the MSRC is the same as the original SRC algorithm:
a test signal can be sparsely represented by the samples belonging
to the same pattern. In the proposed algorithm, we do not use any
negative samples, which means that A consists of only positive
samples. Furthermore, we find a sparse representation of y over A.
If y is a pedestrian, the angle between y and the columns in A
should be small. Therefore, the amplitudes of the solved coeffi-
cients x should be relatively small. Otherwise, those of the
coefficients corresponding to a non-pedestrian should be large.
Furthermore, as described in [16], another property of sparse
representation is that the solved coefficients x of a pedestrian
should be concentrated and those of a non-pedestrian should not
be. Fig. 8 shows the examples with 100 positive training samples.
Fig. 8(a) shows the coefficient curve for a pedestrian. It can be seen
that amplitudes of coefficients are very small (smaller than 0.5).
The coefficient with the largest amplitude value represents the
most similar training sample. In the case with non-pedestrian
which is shown in Fig. 8(b), the amplitudes of coefficients are
much larger. Furthermore, the coefficients of the pedestrians in
Fig. 8(a) are much more concentrated than those of the non-
pedestrians in Fig. 8(b).

The ℓ1-norm ‖x‖1 can be used to measure the concentration
and amplitudes of the coefficients. Firstly, a small ℓ1-norm stands
for concentrated coefficients. With a fixed ℓ2-norm of 1, the more
concentrated the coefficients are, the smaller the ℓ1-norm will be.
Extremely, when the coefficients are the most concentrated (one
of the elements is 1 and the others are 0), the ℓ1-norm has the
minimum value of 1. Thus, using the ℓ1-norm to measure the
concentration of the coefficients is an effective approach. Secondly,

Table 1
The quantitative performance for the candidate region detection stage. (#TP: True
Positive; #FP: False Positive ).

Sequence # Frame # Total people #FP #TP PPV (%) Sensitivity (%)

1 28 80 9 79 88.75 98.75
2 25 85 6 85 92.94 100.00
3 20 88 13 88 85.23 100.00
4 15 95 15 94 84.21 98.95
5 20 95 6 95 93.68 100.00
6 15 74 7 74 90.54 100.00
7 19 88 11 85 87.50 96.59
8 21 87 16 81 81.61 93.10
9 70 92 5 92 94.57 100.00
10 21 80 16 80 80.00 100.00
Total 254 864 104 853 87.96 98.73

0 50 100 150 200
0

50

100

150

200

Image intensity range

br
ig

ht
ne

ss
 h

is
to

gr
am

Fig. 7. The brightness-histogram-curves of Fig. 6(a).
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a small ℓ1-norm also generally stands for small amplitudes of the
elements. The smaller the amplitudes of the coefficients are, the
smaller the ℓ1-norm will be. Therefore, the pedestrians and non-
pedestrians can be classified by a ℓ1-norm threshold after sparse
representation. Actually, the ℓ1-norms of pedestrians and non-
pedestrians are highly discriminative. For example, the ℓ1-norm of
the pedestrians in Fig. 8(a) is only 1.40, while that of the non-
pedestrians in Fig. 8(b) is 72.78.

Let matrix A¼ ½a1; a2;…; an�ARm�n, where ai is a positive
sample of pedestrian. Given a test sample yARm, the proposed
MSRC algorithm can be summarized as follows:

(1) Solve the ℓ1-norm minimization of (8);
(2) Compute the ℓ1-norm ‖x̂‖1, the solution of Step 1);
(3) Identify y: IðyÞ ¼ 1 if ‖x̂‖1rλ, otherwise IðyÞ ¼ 0.

The parameter λ can be chosen through a training process as
follows. For each positive sample ai, find its sparse representation
over the other samples as follows:

x̂ i ¼ arg min
x

‖x‖1; s:t:‖A ix�ai‖2rϵ; ð9Þ

where A i consists of the columns of A except ai. Since the
ℓ1-norms of the pedestrians and non-pedestrian are highly dis-
criminative, a simple way for determining λ can be denoted as

λ¼ α �max
i

‖x̂ i‖1; ð10Þ

where α is a relaxation factor. Based on the numerical studies,
good performance can be achieved when α is in the range of ½1;2�.
In our experiment, α is set as 1.5.

4. Experimental results

In the experiment, we test the performance of the proposed
method in a OTCBVS Benchmark Dataset Collection—OSU thermal
pedestrian database [25]. There are 10 test sequences in the OSU
thermal database, which covers a variety of environmental condi-
tions such as rainy, cloudy and sunny days. In the experiment,
1000 randomly selected point pairs are picked to obtain the SDH
feature. The feature dimension of the SDH feature is set as 20 for
the classification, and λ is picked as 5 in the MSRC. The proposed
algorithm consists of three components—segmentation, feature
extraction and classification. We use the Cþþ language to imple-
ment the first two steps and use the MATLAB to implement the
third part. Programming in the mixed mode with MATLAB and
Cþþ , our algorithm runs about 31 frames/s on an Intel
3.10 GHz CPU.

4.1. Results of the candidate region detection stage

In the proposed method, two different stages are composed to
solve the detection problem and the classification problem indepen-
dently. The performance of both of the stages are evaluated in
this work.

We firstly test the quantitative performance for the candi-
date region detection stage in Table 1. Sensitivity and PPV are
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Fig. 9. The performance of HOGþSVM in different HOG cell sizes and block sizes. (a) The #Missed people (# Total people–#TP). (b) shows the #FP (False Positive number).

Fig. 8. Sparse coefficient curves for example test objects. (a) The case with a
pedestrian. The coefficients x is concentrated and the amplitudes are small. The
coefficient with the largest amplitude value represents the most similar training
sample. (b) The case with a non-pedestrian. The amplitudes of coefficients are large.
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used to estimate the performance of the proposed method
quantitatively [7],

Sensitivity¼ True Positive
Pedestrians in total

; ð11Þ

PPV¼ 1� False Positive
Pedestrians in total

: ð12Þ

The Sensitivity reports the probability of people that are correctly
identified, where a high Sensitivity value corresponds to a high
detection rate of people. The PPV describes the fraction of detec-
tions that actually are people, where a high PPV corresponds to a

low number of false positives. It is shown that the proposed
candidate region detection method achieved 87.96% PPV rate and
98.73% Sensitivity rate. In the detection stage, totally 11 pedes-
trians are not detected and 104 non-pedestrians are falsely
detected as pedestrians.

4.2. Results of the classification stage

Then the performance of the proposed method in the classifi-
cation stage is evaluated. In the database, the first three frames in
each sequence are used for training. The proposed MSRC classifier
is trained by using only the positive samples, so we picked totally

Table 3
Comparison results for the classification stage with different classifiers. Note that the number of the people is the number of the detected people after the candidate
detection stage (#TP: True Positive; #FP: False Positive ).

Sequence #
Frame

#
People

SDHþSRC SDHþSVM HOGþSVM Proposed

#FP #TP PPV
(%)

Sensitivity
(%)

#FP #TP PPV
(%)

Sensitivity
(%)

#FP #TP PPV
(%)

Sensitivity
(%)

#FP #TP PPV
(%)

Sensitivity
(%)

1 28 79 0 63 100.00 79.75 0 66 100.00 83.54 0 78 100.00 98.73 0 78 100.00 98.73
2 25 85 0 67 100.00 78.82 0 83 100.00 97.65 0 83 100.00 97.65 0 85 100.00 100.00
3 20 88 0 72 100.00 81.82 0 65 100.00 73.87 0 79 100.00 89.77 0 87 100.00 98.86
4 15 94 3 78 96.81 82.98 1 92 98.94 97.87 1 91 98.94 96.81 0 94 100.00 100.00
5 20 95 1 84 98.95 88.42 1 95 98.95 100.00 0 94 100.00 98.95 1 95 98.95 100.00
6 15 74 0 63 100.00 85.14 0 66 100.00 89.19 0 70 100.00 94.59 0 74 100.00 100.00
7 19 85 1 72 98.82 84.71 0 42 100.00 49.41 0 85 100.00 100.00 0 81 100.00 95.29
8 21 81 6 75 92.59 92.59 0 74 100.00 91.36 0 71 100.00 87.65 0 81 100.00 100.00
9 70 92 0 92 100.00 100.00 0 92 100.00 100.00 0 91 100.00 98.91 0 92 100.00 100.00
10 21 80 1 61 98.75 76.25 0 58 100.00 72.50 1 77 98.75 96.25 0 80 100.00 100.00
Total 254 853 12 727 98.59 85.23 2 733 99.77 85.93 2 819 99.77 96.01 1 847 99.88 99.30
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Fig. 10. Comparisons of PPV and Sensitivity rates for different algorithms in the classification stage (sequence #11 is for the total sequence). (a) The Sensitivity rate. (b) The
PPV rate.

Table 2
Comparison results for the classification stage with different features. Note that the number of the people is the number of the detected people after the candidate detection
stage (#TP: True Positive; #FP: False Positive ).

Sequence #
Frame

#
People

INERTIAþMSRC LBPþMSRC HOGþMSRC Proposed

#FP #TP PPV
(%)

Sensitivity
(%)

#FP #TP PPV
(%)

Sensitivity
(%)

#FP #TP PPV
(%)

Sensitivity
(%)

#FP #TP PPV
(%)

Sensitivity
(%)

1 28 79 0 74 100.00 93.67 0 77 100.00 97.47 0 77 100.00 97.47 0 78 100.00 98.73
2 25 85 1 81 98.82 95.29 1 81 98.82 95.29 0 83 100.00 97.65 0 85 100.00 100.00
3 20 88 1 88 98.86 100.00 1 73 98.86 82.95 0 80 100.00 90.91 0 87 100.00 98.86
4 15 94 2 71 97.87 75.53 3 72 96.81 76.60 2 90 97.87 95.74 0 94 100.00 100.00
5 20 95 1 79 98.95 83.16 0 81 100.00 85.26 0 92 100.00 96.84 1 95 98.95 100.00
6 15 74 0 72 100 97.30 0 69 100.00 93.24 0 73 100.00 98.65 0 74 100.00 100.00
7 19 85 2 60 97.65 70.59 1 77 98.82 90.59 1 85 98.82 100.00 0 81 100.00 95.29
8 21 81 11 48 86.42 59.26 2 67 97.53 82.72 1 76 98.77 93.83 0 81 100.00 100.00
9 70 92 0 92 100.00 100.00 0 90 100.00 97.83 0 91 100.00 98.91 0 92 100.00 100.00
10 21 80 2 78 97.50 97.50 1 70 98.75 87.50 2 76 97.50 95.00 0 80 100.00 100.00
Total 254 853 20 743 97.66 87.10 9 757 98.94 88.75 6 823 99.30 96.48 1 847 99.88 99.30
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50 positive samples for training. For fair comparison, the com-
parative classifiers used the same 50 positive samples and other
50 negative samples in the training stage. The rest of the frames
are used for testing.

To test the robustness of the proposed method, we change our
feature and classifier by some competitive ones respectively. We
first compare the proposed method with three different features—
intensity distribution based inertia (INERTIA)[20], local binary

patterns (LBP) [26], and histogram of oriented gradients (HOG)
[27] features, by using the MSRC classifier. INERTIA is a well-
known feature which is based on the inertial similarity among
pedestrian regions in thermal pedestrian detection. LBP and HOG
are two famous feature descriptors used in computer vision and
image processing for the purpose of object detection. LBP is a
simple but very efficient texture operator. In the comparative test,
an (8, 1) neighborhood is used in LBP with uniform patterns,

Fig. 11. Some examples of the comparison results. (a) The results of INERTIAþMSRC algorithm; (b) the results of LBPþMSRC algorithm; (c) the results of HOGþMSRC
algorithm; (d) the results of SDHþSVM algorithm; (e) the results of SDHþSRC algorithm; (f) the results of HOGþSVM algorithm;(g) the results of the proposed method.
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yielding 53 different histogram labels. HOG descriptor focuses
mainly on silhouette contours. The HOG parameters were adopted
after a set of experiments performed with the SVM classifier. Fig. 9
plots both of the #Missed people (#Total people-#TP) and the #FP
(False Positive number) in different HOG cell sizes and block sizes.
The HOG window size is fixed as the bounding box size, the block
overlap is set at half of the block size and the histogram channel is
set as 9. It is shown that 2�2 block size with 4�4 cell size
performs the best, achieving 45 of #Missed people and 2 of #FP in
our experiment.

Table 2 summarizes the Sensitivity and PPV in 10 sequences of
the OSU thermal pedestrian database with different features. We
only evaluate the classification performance, so all the results are
based on the first stage. The number of the people in Table 2 is the
number of the detected people after the detection stage. To ensure
the fair comparisons and repeatability, a standard criteria–Pascal
Criteria is used [28]. The ground truth bounding box is marked
manually and a pedestrian with more than 40% occlusion is
considered to be a non-pedestrian. Then a overlap probability ζ
between the predicted bounding box Bp and the ground truth
bounding box Bg is indicated as

ζ ¼ areaðBp \ BgÞ
areaðBp [ BgÞ

; ð13Þ

where Bp \ Bg denotes the intersection of the predicted and
ground truth bounding box, and Bp [ Bg denotes their union.
When ζ exceeds 60%, the recognition is considered a correct
recognition.

The INERTIA feature achieves a 97.66% PPV rate and 87.10%
Sensitivity rate in the total sequences. The detection result of the
LBP feature is 98.94% in PPV and 88.75% in Sensitivity, and the
HOG feature shows a 99.30% PPV rate and 96.48% Sensitivity rate.
Comparing with these methods, we get a Sensitivity rate of 99.30%
(6 pedestrians are missed), and a PPV rate of 99.88% (1 falsely
detected pedestrian) using the proposed SDH feature, which is
better than the INERTIA, LBP, and HOG features.

We then compare the proposed method with two famous
classifiers—the standard SRC and SVM, using the SDH feature.
Since the HOG feature is usually used with the SVM classifier [27],
this well-established combination is also compared with the
proposed method. Table 3 summarizes the classification results.
The MSRC classier achieves better performance results (99.88% in
PPV and 99.30% in Sensitivity) than both of the standard SRC
classier (98.59% in PPV and 85.23% in Sensitivity) and the SVM
classifier with the SDH feature (99.77% in PPV and 85.93% in
Sensitivity). It is also shown that the HOG and SVM combination
can achieve high PPV (99.77%) and Sensitivity (96.01%), but it is

not as good as the proposed algorithm. Fig. 10 shows more
straightforward comparisons of PPV and Sensitivity rates in the
classification stage.

Furthermore, some sample results after the two stages are
shown in Fig. 11. Row (a) is the result of the INERTIAþMSRC
algorithm, row (b) is that of the LBPþMSRC algorithm, row (c) is
that of the HOGþMSRC algorithm, row (d) shows the results of the
SDHþSVM algorithm, row (e) shows the results of the SDHþSRC
algorithm, row (f) shows the results of the HOGþSVM algorithm,
and row (g) shows the result of the proposed method. It can be
seen that the proposed method showed good performance in
detecting pedestrians, and the comparison algorithms could not
either remove the non-pedestrian subjects or detect the pedes-
trian subjects correctly.

In addition, the proposed method is compared with the state-
of-art work in thermal pedestrian detection [6]. In [6], Davis et al.
proposed a famous two-stage template-based method. Further-
more, the detection result for the same challenging database was
demonstrated in the paper. For the Davis's method, PPV of the 10
sequence is 99.39% and the Sensitivity is 94.51%. Our approach
works better on both of Sensitivity and PPV.

4.3. Discussion of training numbers

In this subsection, we discuss the performance of the algorithms
with different numbers of training samples. We picked 10, 20, 50 and
100 positive samples, and 10, 20, 50 and 100 negative samples in the
first three frames independently. The final results including the
candidate region detection and the classification stages are shown
in Tables 4–7. Figs. 12–15 corresponding to the tables are also
included for easy understanding. In addition, Fig. 16 illustrates
Sensitivity and PPV performances of the seven different algorithms
with the changing sample numbers. The proposed method showed
better performance by comparing to the other methods.

For a classifier, the training process is to learn the pattern with
some samples. The recognition performance is affected by whether
the samples are sufficient or not. Before the samples are sufficient, the
recognition rate can raise greatly with the increase of the sample
number. When the sample size is large enough, there will be no
obvious improvement in the recognition rate. In Fig. 16, it can be seen
that the classifiers achieve relatively very high performances with 50
training samples. When the training number is smaller than 50, the
recognition performances of algorithms become better with the
increase of training samples. However, when the training number is
larger than 50, the PPV and Sensitivity changes are relatively stable.

The sufficient sample number in Fig. 16 is smaller than that in
common recognition tasks of the visible light images. This is because,

Table 4
Comparison results of different algorithms using 10 positive and 10 negative training samples.

Sequence INERTIAþMSRC LBPþMSRC HOGþMSRC SDHþSRC SDHþSVM HOGþSVM Proposed

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

1 98.75 82.50 98.75 66.25 100.00 73.75 98.75 75.00 98.75 82.50 98.75 76.25 98.75 88.75
2 96.47 64.71 98.82 87.06 98.82 75.29 98.82 76.47 98.82 81.18 98.82 76.47 100.00 83.53
3 98.86 76.14 95.45 51.14 98.86 73.86 96.59 76.14 96.59 75.00 98.86 69.32 100.00 80.68
4 93.68 67.37 96.84 50.53 91.58 76.84 94.74 78.95 94.74 69.47 93.68 73.68 94.74 82.11
5 95.79 66.32 95.79 60.00 97.89 76.84 95.79 67.37 97.89 71.58 97.89 74.74 97.89 85.26
6 95.95 79.73 95.95 100.00 97.30 82.43 95.95 82.43 98.65 74.32 95.95 94.59 98.65 93.24
7 89.77 61.36 97.73 85.23 96.59 72.73 93.18 68.18 97.73 47.73 96.59 69.32 97.73 72.73
8 88.51 37.93 91.95 43.68 98.85 75.86 89.66 73.56 91.95 77.01 98.85 74.71 98.85 77.01
9 100.00 100.00 100.00 91.30 100.00 97.83 100.00 97.83 98.91 97.83 100.00 96.74 100.00 100.00
10 85.00 75.00 98.75 80.00 97.50 78.75 83.75 73.75 100.00 72.50 96.25 77.50 100.00 90.00
Total 94.33 70.95 96.99 70.83 97.69 78.47 94.79 76.97 97.34 74.88 97.57 78.13 98.61 85.19
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for the same classifier, the number of sufficient samples is decided by
the target object to be recognized. Without generality, the training
samples can be viewed as randomly chosen from the object space.
The less information the object contains, the fewer samples it needs,
and vice versa. The persons, especially small-size people, in thermal
infrared images, usually contain less information than those in the
visible light images. Therefore, the number of sufficient samples for
the thermal infrared images is not so large.

In the evaluation of pattern recognition, there are various
effective methods. Besides PPV and Sensitivity, the ROC curve is

also broadly used. Therefore, we summarized the above compara-
tive experimental results with ROC curves, in which the seven
methods are compared. As shown in Fig. 17, we can observe that
the proposed method outperforms the others.

5. Conclusion

In this paper, a robust method for pedestrian detection in
thermal infrared images has been proposed. We adopted a

Table 7
Comparison results of different algorithms using 100 positive and 100 negative training samples.

Sequence INERTIAþMSRC LBPþMSRC HOGþMSRC SDHþSRC SDHþSVM HOGþSVM Proposed

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

1 100.00 92.50 100.00 96.25 100.00 96.25 100.00 78.75 100.00 82.50 100.00 96.25 100.00 97.50
2 98.82 92.94 98.82 95.29 100.00 97.65 100.00 87.06 100.00 97.65 100.00 97.65 100.00 100.00
3 98.86 94.32 98.86 82.95 100.00 93.18 100.00 82.95 100.00 75.00 100.00 89.77 100.00 98.86
4 97.89 77.89 97.89 80.00 97.89 96.84 96.84 82.11 98.95 96.84 98.95 95.79 98.95 98.95
5 98.95 84.21 100.00 85.26 100.00 96.84 98.95 89.47 98.95 100.00 100.00 100.00 100.00 100.00
6 100 90.54 100.00 94.59 100.00 98.65 100.00 85.14 100.00 89.19 100.00 94.59 100.00 100.00
7 97.73 77.27 98.86 89.77 98.86 96.59 98.86 81.82 100.00 47.73 100.00 96.59 100.00 92.05
8 88.51 58.62 97.70 83.91 98.85 90.80 93.10 86.21 100.00 85.06 100.00 86.21 100.00 93.10
9 100.00 100.00 100.00 97.83 100.00 98.91 100.00 98.91 100.00 100.00 100.00 100.00 100.00 100.00
10 97.50 97.50 98.75 87.50 97.50 95.00 98.75 76.25 100.00 72.50 98.75 96.25 100.00 100.00
Total 97.80 86.34 99.07 89.12 99.31 96.06 98.61 85.07 99.77 84.95 99.77 95.37 99.88 98.03

Table 6
Comparison results of different algorithms using 50 positive and 50 negative training samples.

Sequence INERTIAþMSRC LBPþMSRC HOGþMSRC SDHþSRC SDHþSVM HOGþSVM Proposed

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

1 100.00 92.50 100.00 96.25 100.00 96.25 100.00 78.75 100.00 82.50 100.00 97.50 100.00 97.50
2 98.82 95.29 98.82 95.29 100.00 97.65 100.00 78.82 100.00 97.65 100.00 97.65 100.00 100.00
3 98.86 100.00 98.86 82.95 100.00 90.91 100.00 81.82 100.00 73.87 100.00 89.77 100.00 98.86
4 97.89 74.74 96.84 75.79 97.89 94.74 96.84 82.11 98.95 96.84 98.95 95.79 100.00 98.95
5 98.95 83.16 100.00 85.26 100.00 96.84 98.95 88.42 98.95 100.00 100.00 98.95 98.95 100.00
6 100 97.30 100.00 93.24 100.00 98.65 100.00 85.14 100.00 89.19 100.00 94.59 100.00 100.00
7 97.73 68.18 98.86 87.50 98.86 96.59 93.10 86.21 100.00 85.06 100.00 81.61 100.00 93.10
8 87.36 55.17 97.70 77.01 98.85 87.36 93.10 86.21 100.00 85.06 100.00 81.61 100.00 93.10
9 100.00 100.00 100.00 97.83 100.00 98.91 100.00 100.00 100.00 100.00 100.00 98.91 100.00 100.00
10 97.50 97.50 98.75 87.50 97.50 95.00 98.75 76.25 100.00 72.50 98.75 96.25 100.00 100.00
Total 97.69 86.00 98.96 87.62 99.31 95.25 98.61 84.14 99.77 84.84 99.77 94.79 99.88 98.03

Table 5
Comparison results of different algorithms using 20 positive and 20 negative training samples.

Sequence INERTIAþMSRC LBPþMSRC HOGþMSRC SDHþSRC SDHþSVM HOGþSVM Proposed

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%)

1 98.75 90.00 100.00 88.75 100.00 91.25 98.75 85.00 98.75 82.50 98.75 96.25 98.75 97.50
2 98.82 85.88 97.65 85.88 98.82 91.76 98.82 77.65 100.00 89.41 98.82 94.12 100.00 100.00
3 98.86 88.64 95.45 81.82 98.86 93.18 98.86 81.82 100.00 75.00 97.73 89.77 98.86 98.86
4 97.89 77.89 96.84 82.11 96.84 90.53 96.84 81.05 96.84 88.42 97.89 95.79 100.00 97.89
5 95.79 80.00 95.79 81.05 98.95 90.53 95.79 84.21 97.89 88.42 98.95 87.37 100.00 96.84
6 97.30 81.08 100.00 81.08 98.65 93.24 95.95 83.78 98.65 83.78 98.65 94.59 98.65 100.00
7 94.32 79.55 98.86 87.50 98.86 84.09 90.91 79.55 98.86 47.73 97.73 84.09 98.86 87.50
8 90.80 45.98 97.70 72.41 98.85 82.76 94.25 80.46 100.00 83.91 98.85 81.61 100.00 79.31
9 100.00 100.00 100.00 95.65 100.00 98.91 100.00 98.91 100.00 97.83 100.00 98.91 100.00 100.00
10 97.50 80.00 98.75 87.50 97.50 86.25 98.75 73.75 100.00 72.50 97.50 88.75 100.00 93.75
Total 96.99 80.90 98.03 84.38 98.73 90.28 96.88 82.75 99.07 81.13 98.50 91.09 99.54 95.14
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discriminative feature, the SDH feature, for representing pedes-
trians and non-pedestrians. The SDH feature stands for the dis-
tribution of Euclidean distances between pairs of randomly selected
points from the contour saliency map of an object. This distribution
describes the overall shape of the represented object. Furthermore,

a robust MSRC is utilized to detect the pedestrians. We modified the
SRC classifier so that it can satisfy the requirement of pedestrian
classification. The experimental results showed that the proposed
method exhibits very high performance by comparing it with other
algorithms in different features and classifiers.
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Fig. 14. Comparisons of PPV and Sensitivity rates for different algorithms using 50 training samples (sequence #11 is for the total sequence). (a) The Sensitivity rate. (b) The
PPV rate.
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Fig. 13. Comparisons of PPV and Sensitivity rates for different algorithms using 20 training samples (sequence #11 is for the total sequence). (a) The Sensitivity rate. (b) The
PPV rate.
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Fig. 12. Comparisons of PPV and Sensitivity rates for different algorithms using 10 training samples (sequence #11 is for the total sequence). (a) The Sensitivity rate. (b) The
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